Chapitre 9 Les mutations de l'ADN et le génie génétique.

Section 1
Les mutations et les mutagènes

Résultats d'apprentissages

- V7.4 Expliquer la mutation d'un gène et prédire ses conséquences sur la synthèse des protéines, les phénotypes et l'héridité.
- V7.5 Décrire des facteurs qui peuvent mener à des mutations dans l'information génétique d'une cellule.
- V7.6 Expliquer comment une mutation au hasard dans la séquence des bases azotées fournit une source de variabilité génétique

Mutation

- Tout changement permanent du matériel génétique.
 - Mutation des cellules germinales : affectera les descendants.
 - Mutation des cellules somatiques: affectera seulement l'individu.

Pouvez-vous voir la mutation?

Les types de mutations

- Mutations ponctuelles:
 - Mutation qui affecte un seul nuclétotide sur un seul gène.
 - Substitutions de nucléotides
 - Insertions ou supressions de nucléotides
- Mutations chromosomiques:
 - Mutation qui affecte un ensemble de nucléotides sur un même gène ou sur des gènes différents.
 - Enjambement
 - Perte de séquences régulatrices ou structurelles

Les mutations ponctuelles

- Une substitution de nucléotide peut créer trois effets:
 - Mutation silencieuse
 - Mutation qui n'aura aucun effet sur le polypeptide final.
 - Mutation contresens
 - Mutation qui produirera une polypeptide différent.
 - Mutation non-sens
 - Mutation qui produira un codon d'arrêt prématurémment.
 On obtiendra un polypeptide non-fonctionnel.

Exemples d'effets de la substitution

A La séquence codante normale, avec les codons dans la rangée supérieure et les acides aminés correspondants au-dessous.

B Cette mutation est silencieuse car le changement apporté à la séquence nucléotidique n'a pas d'effet sur le produit polypeptidique.

C Il s'agit d'une mutation à contresens, car elle entraîne l'insertion dans la chaîne polypeptidique de l'acide aminé de la valine à la place du glutamate. La protéine obtenue est incapable de transporter efficacement l'oxygène et elle est à l'origine d'une maladie appelée la drépanocytose.

D Cette substitution entraîne une mutation non-sens en changeant le codon pour l'acide aminé de la leucine pour un codon de terminaison prématuré. Ce gène ne produira pas de polypeptide fonctionnel.

Les mutations chromosomiques

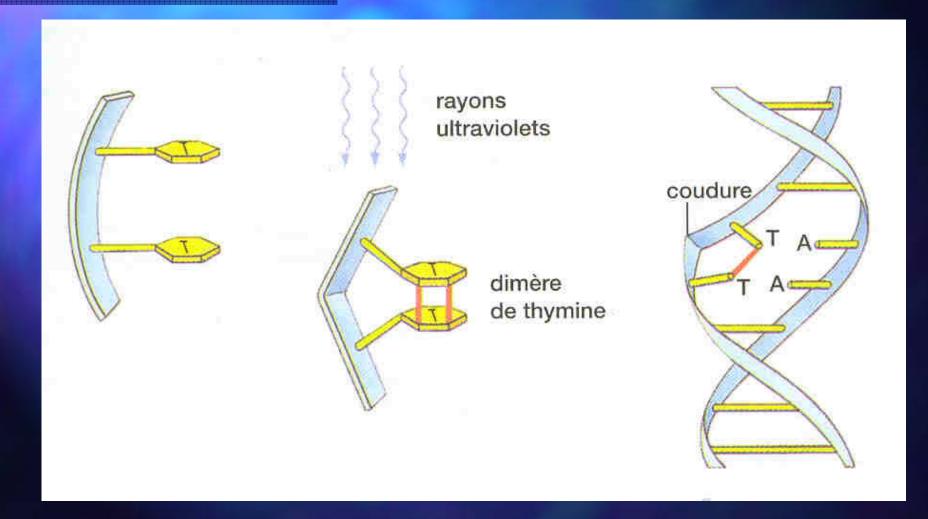
- Réorganisation du matériel génétique sur plusieurs gènes.
 - L'enjambement: Échange de matériel génétique pendant le processus de méiose.
 - Pertes de séquences régulatrices ou structurelles:

Les causes de mutations

- Mutations spontanées:
 - Mutations qui se produisent sans l'aide d'agents extérieurs.
 - Causées par le mauvais appariement de bases par l'ADN polymérase.

Les causes de mutations

- Mutations induites:
 - Mutations causées par des agents extérieurs. Ces agents sont appelés substances mutagènes.
 - Mutagènes physiques


Mutagènes chimiques

Les mutagènes physiques

Le rayonnement:

- Rayonnement X (gamma)
 - Déchire les brins d'ADN entraînant une perte de nucléotides ou de gènes complets.
- Rayonnement UV
 - Moins puissant que les rayons X.
 - Provoquent l'apparition de dimères (liaisons covalentes) entre deux pyrimidines adjacents.
 - Nuit à la réplication de l'ADN.
 - À l'origine de certains cancers (mélanome)
 - La mélanine dans la peau absorbe les rayons UV protégeant l'ADN.

Actions des rayons UV

Mutagènes chimiques

- Substances qui réagiront chimiquement avec l'ADN.
 - Analogues de bases: vont substituer certains nucléotides, mais mal s'apparier pendant la réplication.
 - Certaines molécules vont changer la configuration des nucléotides et les transformer en un autre type de nucléotide.
 - Exemples de substances mutagènes:
 - Nitrites (agents de conservation)
 - Vapeurs d'essence
 - Benzène dans la fumée de cigarettes
 - La majorité des mutagènes chimiques sont cancérigènes.

Les mécanismes de réparation

- Réparation directe:
 - Par l'ADN polymérase lors de la vérification.
- Réparation par excision-synthèse:
 - Épissage du segment endommagé (exemple: un dimère) et remplacement par une copie sans erreur.
- Réparation par recombinaison:
 - Lorsque les deux brins sont endommagés.
 - On utilisera la partie homologue d'une chromatide sœur comme matrice.
- Gène suicide: Si l'ADN est trop endommagée, elle commandera la mort de la cellule.